

PII: S0277-5387(97)00034-X

Equilibria of the H⁺-MoO₄²⁻-(CH₃)₂AsO₂⁻ system in aqueous 0.6 M Na(CI) medium

A. Kobayashi, M. Sugihashi and A. Yagasaki*

Department of Chemistry, School of Science, Kwansei Gakuin University, 1-155 Uegahara Ichibancho, Nishinomiya 662, Japan

(Received 11 November 1996; accepted 14 January 1997)

Abstract—The equilibria $pH^+ + qM_0O_4^{-2} + r(CH_3)$. Aso $\overline{O_2} \leftrightarrows$ (H^+) , $(M_0O_4^{-2})$, $((CH_3)$. Aso $\overline{O_2}$), have been investigated at 25.0 \degree C in 0.600 M Na(Cl) by the combined emf-NMR method. Both emf and ¹H NMR data confirmed the existence of $[(CH_3)_2AsMo_4O_{14}(OH)]^2$, (7,4,1) in the (p, q, r) notation, in solution. Least-squares calculation gave $\log \beta_{74,1} = 46.20 \pm 0.03$, where $\beta_{74,1}$ is the formation constant of (7,4,1). No other ternary species was detected in solution. © 1997 Elsevier Science Ltd

Keywords: molybdoarsinate; heteromolybdate; solution equilibria; IH NMR; dimethylarsinate; formation constants.

Equilibrium analysis of molybdoorganoarsonates and molybdoorganoarsinates by potentiometry were reported some time ago [1]. The equilibria of the H^+ - MoO_4^{2-} -RAs O_3^{2-} (R = CH₃, C₆H₅) and H⁺-MoO₄⁻- $(CH₃)₂AsO₂⁻$ systems were then explained by relatively simple models. In our recent reinvestigation of the H⁺-MoO₄⁻-CH₃AsO₃⁻ system by the combined emf-NMR method [2], however, as many as nine different molybdomethylarsonate species were found in solution [3]. This result made us suspect the existence of molybdodimethylarsinates other than the well-characterized AsM04 species and promoted us to reinvestigate the H⁺-MoO₄⁻-(CH₃)₂AsO₂ system by the combined emf-NMR technique [4].

EXPERIMENTAL

Chemicals

The following were purchased from commercial sources and used without further purification: D_2O (Isotech), DCI and TSP-d4 (Aldrich). NaCI (Manack, JIS Primary Standard) was dried at 300°C for 30 min before use. (CH₃)₂AsO₂Na (Kishida) was dried *in* $vacuo$ over P_2O_5 until a constant weight was reached.

The arsinate salt dried in this manner was found to contain no water.

Emf measuremen ts

The same apparatus as in our previous report was employed $[1(a)]$. The temperature was kept constant at 25.0 ± 0.1 °C throughout the experiment. Six titrations were performed and 139 data points were collected. The data covered the ranges $6.9>$ $-\log h > 1.8$, $30.00 \ge B/\text{mM} \ge 8.00$, $10.00 \ge A$ $C/mM \ge 2.00$, and $12.00 \ge B/C \ge 1.00$, where h is the concentration of the free hydrogen ion in solution [5]. B stands for the total concentration of molybdate and C that of arsinate. In most cases stable emfvalues were attained within 5 min. However, we found somewhat slower equilibria in the range $4.0 > -\log h > 3.2$ when *B/C* was around 4.

NMR measurements

¹H NMR spectra were recorded on a JEOL JNM-A400 spectrometer at 400 MHz and referenced externally to $TSP-d_4$ by the sample replacement method. In total 79 spectra were recorded in the ranges $8.3 > pH > 1.4$ and $15 \ge B/C \ge 1$. *B* was kept constant at 30.01 mM.

^{*} Author to whom correspondence should be addressed.

Binary systems

Since there was no former report on the binary H^+ - $(CH_3)_2AsO_2^-$ equilibria in 0.600 M Na(Cl), four separate emf titrations were performed to determine the formation constants of this system. A total of 149 emf data points was collected. The data covered the ranges $7.8 > -\log h > 1.6$ and $30.00 \ge C/mM \ge 3.00$. A total of 28 ¹H NMR spectra were also recorded, which covered the ranges $30.00 \ge C/mM \ge 10.00$ and $8.4 > pH > 1.7$. Both emf and ¹H NMR data did not show any sign of concentration dependence, meaning that only monomeric species existed in the ranges investigated. The system was well explained by $(CH_3)_2AsO_2^-$, $(CH_3)_2AsO_2H$, and $(CH_3)_2AsO_2H_2^+$ $[(0,0,1), (1,0,1),$ and $(2,0,1),$ respectively, in the (p, q, r) notation [6]] with the formation constants $\log \beta_{1,0,1} = 6.015(5)$ and $\log \beta_{2,0,1} = 7.638(7)$ [7]. Least-squares calculations on the δ vs pH curve gave the ¹H NMR chemical shifts of $(0, 0, 1)$, $(1, 0, 1)$, and $(2, 0, 1)$ as 1.66(1) ppm, 2.06(1) ppm, and 2.47(7) ppm, respectively.

For the H⁺-MoO₄⁻ equilibria the constants reported elsewhere were used [2].

RESULTS AND DISCUSSION

The equilibria of the current system can be written in the general form

 $pH^{+} + qMoO₄²⁻ + r(CH₃)$, AsO₇ \leftrightharpoons $(H^+)_p (MoO_4^{2-})_q ((CH_3)_2AsO_2^-)_r$

The complex on the right-hand side will simply be referred as (p, q, r) and its formation constant $\beta_{p,q,r}$.

In Fig. 1 chemical shifts of different peaks are plotted against pH. Contrary to our initial suspicion, only two peaks were observed in the entire concentration ranges investigated. Peak B is assigned unam-

Fig. 1. Chemical shifts, δ , as a function of pH. B was kept constant at 30 mM. Peaks A and B are assigned to $(7, 4, 1)$ and free arsinate, respectively.

biguously to the free arsinate in solution, because it appears in the spectra even if the solution contains no molybdate. This leaves peak A as the only molybdoarsinate peak in the current system.

The variation of relative peak intensities with the B/C ratio (Fig. 2) strongly suggests that the molybdoarsinate formed in solution has a Mo/As ratio (hence *q/r* ratio) of four. The plot shown in Fig. 3 is also consistent with the formation of a strong complex that has a Mo/As ratio four. The potentiometric titration curve at $B/C = 4$ (Fig. 4) shows a plateau at $Z_{B,C} \sim 1.4$ [8]. This indicates that the $p/(q+r)$ value of the molybdoarsinate formed is about 1.4.

All these observations have led us to the conclusion that the molybdoarsinate formed in solution is (7,4, 1). Least-squares calculations on the emf data by a program LAKE [2, 9] gave $\log \beta_{7,4,1} = 46.20(3)$

Fig. 2. Relative intensities of different peaks as a function of the *B*/*C* ratio at pH \approx 4.5. *B* was kept constant at 30 mM. Solid and dotted lines have been calculated by using the determined formation constants.

Fig. 3. Relative intensities of different peaks as a function of pH at $B = 30$ mM and $C = 15$ mM. Solid and dotted lines have been calculated by using the determined formation constants. At $pH < 4$, 50% of C is consumed for the formation of the molybdoarsinate (7, 4, 1).

Fig. 4. Z_{BC} as a function of $-\log h$. Symbols are from titrations at $B = 10$, 30 and 8 mM, and $C = 10$, 2.5 and 2. mM, respectively. Solid and dotted lines have been calculated by using the determined formation constants.

[5]. Introduction of $(6, 4, 1)$ and $(8, 4, 1)$ to the model improved the result of the least-squares calculation slightly. However, protonation/deprotonation of (7,4, 1) was excluded because the chemical shift of peak A showed no pH dependence.

Figure 5 shows the molybdate distribution among different species calculated by using the determined formation constant of $(7, 4, 1)$. Here again it is shown that (7, 4, 1) is a very strong complex. It forms almost quantitatively in moderately acidic aqueous solution. Virtually no isopolymolybdates are formed when $B/C = 4$. An interesting thing to note here is this simplicity of the equilibria. As mentioned earlier, as many as nine heteropolymolybdate species were detected in the closely related H^+ -MoO₄⁻-CH₃AsO₃⁻ system. Substituting one of the oxygen atoms bound to the arsenic atom with a methyl group seems to have a

Fig. 5. Distribution diagram of Mo as a function of $-\log h$ at $B = 8$ mM and $C = 2$ mM. Minor species with the fraction < 0.02 have been omitted.

great influence on the formation of heteropolymolybdate.

The composition of $(7, 4, 1)$ coincides with that of $[({\rm CH}_3)_2A_5M_0A_0A_1({\rm OH})]^{2-}$, which have been isolated and structurally characterized as a guanidinium salt [10]. It is most likely that $(7.4,1)$ actually is $[(CH₃)₂ AsMo₄O₁₄(OH)]²$.

Acknowledgements- - We thank Mr H. Nakano for measuring some of the NMR spectra and Professor T. Okada for the use of the computer. This work was supported in part by a Grant-in-Aid for Scientific Research Nos. 08232276 and 08874048 from Monbusho (Ministry of Education. Science. and Culture of Japan).

REFERENCES

- (a) Yagasaki, A., Takahama, H. and Sasaki, Y., *Bull. Chem. Soc. Jpn,* 1987, 60, 3925: (b) Takahama, H. and Sasaki, Y., *Bull. Chem. Soc. Jpn,* 1983, 56, 895.
- 2. Yagasaki, A.. Andersson, I. and Pettersson, L., *hlorg. Chem..* 1987, 26, 3926.
- 3. (a) Kobayashi, A. and Yagasaki, A., *Abstracts q/ Papers,* 30th International Conference on Coordination Chemistry, Kyoto, Japan, July 1994, No. PS5-29; (b) Kobayashi. A. and Yagasaki, A., *Abstracts ol Papers,* 69th National Meeting of Chemical Society of Japan, Kyoto, March 1995, No. 4B213; (c) Kobayashi, A. and Yagasaki, A., *lnorg. Chem.,* 1997, 36, 126.
- 4. The 0.6 M Na(Cl) medium, which is becoming the *de facto* standard, was employed in the current study, while the $1.0 M$ Na(Cl) medium was used in the previous report $[1(b)]$.
- 5. (a) In the current report both $-\log h$ and pH scales are used. The $-\log h$ scale is used for emf data because it is the concentration of H^+ , not the operationally defined pH, that we measure in potentiometric titrations under constant ionic strength. For NMR data, however, the pH scale is used, since the solvent used is 99.9% D₂O and there is no convenient way to measure D^+ concentration in solution. The pH reported here is an *apparent* pH that is measured by a standard pH meter. No pH to pD conversions were made, although there is a report concerning $pH-pD$ conversion $[5(b)]$ (b) Glasoe, P. K. and Long, F. A., *J. Phys. ('hem..* 1960, 64, 188.
- 6. Pettersson, 1,., *Acta. Chem. Scamt.,* 1975. A29, 677.
- 7. The numbers in parentheses are three times estimated standard deviations.
- 8. Average H⁺ consumption factor, $Z_{B,C}$, is defined as $Z_{B,C} = (H-h)/(B+C)$, where H is the total hydrogen concentration over the chosen zero level $(H, O, MoO₄²$, and $(CH₃)₂AsO₂$ [2].
- 9. lngri, N., Andersson, I., Pettersson, L., Yagasaki, A., Andersson, L. and Holmström. K., Acta *('hem. Stand.,* 1996, 50, 717.
- 10. (a) Barkigia. K. M., Rajkovic, L. M., Pope, M. T. and Quicksall, C. O., *J. Am. Chem. Sot.,* 1975, 97, 4146; (b) Barkigia, K. M., Rajkovic-Blazer, L. M., Pope, M. T., Prince, E. and Quicksall, C. *0., lnorg. Chem.* 1980, 19, 2531 ; (c) Matsumoto, *K. Y., Bull. Chem. Soc. Jpn, 1979*, 52, 3284.